Implementing High Resolution Site Characterization

Thanks to: Steve Dyment, U.S. EPA ORD Seth Pitkin, Stone Environmental

Overview

Review of Data Quality Objective (DQO) Process

- » Step 1 State the problem
- » Step 2 Identify the decision
- » Step 3 Identify the inputs to the decision
- » Step 4 Define the boundaries of the studies
- » Step 5 Develop a decision rule
- » Step 6 Specify tolerable limits on decision errors
- » Step 7 Optimize the design

Explain the Triad Approach

- » Systematic Planning
- » Dynamic Work Strategies
- » Real-Time Measurement Technologies

High Resolution Site Characterization (HRSC)

What are DQOs?

- Data Quality Objectives (DQOs) are quantitative and qualitative criteria that:
 - » Clarify study objectives
 - » Define appropriate types of data to collect
 - » Specify the tolerable levels of potential decision errors

The 7 Steps of DQO Process

- Step 1 State the problem
- Step 2 Identify the decision
- Step 3 Identify the inputs to the decision
- Step 4 Define the boundaries of the studies
- Step 5 Develop a decision rule
- Step 6 Specify tolerable limits on decision errors
- Step 7 Optimize the design

Stating the Problem

- What is the problem?
- What resources are available?
- What time is available?
- What important social / political issues have an impact on the decision?

Identifying the Decision

- Identify the principal study question
 - » Clarify the main issue to be resolved
- Specify the alternative actions that would result from each resolution
 - » Associate a course of action with each possible answer
- Define the decision statement that must be resolved to address the problem
 - » Combine the principal study question and the alternative actions into a specific decision statement

Identifying Inputs for the Decision

Focus on what information is needed for the decision

- Identify the variables / characteristics to be measured
- Identify the information needed to establish the action level

Defining the Boundaries

Define the spatial boundary for the decision

- » Define the geographical area within which decisions apply
- » Define the media of concern
- » Divide each medium into homogeneous strata

Define the temporal boundary of the decision

- » Determine the time frame to which the study results apply
- » Determine when to study
- Define a scale of decision making
- Identify practical constraints on data collection

Develop a Decision Rule

Develop an "If..., then..." statement that incorporates:

- » The population parameter of interest (e.g., mean, maximum, percentile)
- » The scale of decision making (e.g., residential lot size)
- » The action-triggering value
- » The alternative actions

Specify Limits on Decision Errors

- Determine the possible range of the parameter of interest
- Determine baseline condition (null hypothesis)
- Determine consequences of each decision error. Consequences may include:
 - » Health risks
 - » Ecological risks
 - » Political risks
 - » Social risks
 - » Resource risks

Develop general data collection design alternatives

For each design, develop cost formula, select a proposed method of data analysis, develop method for estimating sample size to correspond to method for data analysis

Select the most resource-effective design

- » Consider cost, human resources, other constraints
- » Consider performance of design

DQO Process Output

- Qualitative and quantitative framework for a study
- Feeds directly into the Quality Assurance Project Plan (QAPP) which is essential for ensuring quality in environmental data collection activities

Develop Conceptual Site Model

- Develop a mental picture of the site and how it interacts in the environment (sources, hydrogeology)
 - » Review site information and data to identify preliminary Conceptual Site Model (CSM)
 - » Concept of CSM may be different for different team members
- CSM helps identify data gaps
- CSM is dynamic over project lifecycle
- Data collected should be focused on adding certainty to CSM
- CSM leads to common understanding of where the site is today

Conceptual Site Model

Minimum components:

- » Source
- » Environmental setting
 - > Topography, surface water hydrology, geology, hydrogeology, land use
- » Release mechanism
- » Migration pathways
- » Exposure routes
- » Receptors

Identify Data Needs

Data Types

- » Locations of municipal wells
- » Stratigraphy
- » Depth to water
- » Soil permeability
- » Location of waste
- » Ground water concentrations

Data Amount

- » Function of uncertainty, resources
- » Statistical analysis may be appropriate
- Data Location
- Data Quality
 - » screening vs. definitive
 - » qualitative vs. quantitative

Summary on Project Planning

- Project planning involves all team members, including stakeholders and regulators
- Agreement on conceptual site model and site closeout statement is critical
- Data needs are governed by project objectives and conceptual site model
- Sampling program is designed to obtain data by most efficient means and is well documented

Sampling Selection Criteria

Method Selection

- » Sample matrices
- » Contaminant type
- » Sample representativeness
- » Practicality / simplicity
- » Cost
- » Safety

Location Selection

- » Objectives
- » Site history and disposal practices
- » Hydrogeology
- » Contaminant behavior
- » Receptor location
- » Statistical significance
- » Safety

The Triad Approach

Synthesizes practitioner experience, successes, and lessons learned into an institutional framework

Site Cleanup Process

 $\mathbf{\nabla}$

	Phase of Work	Triad Component
Site	 Property Acquisitions and Brownfields Sites 	 Preliminary Conceptual Site Model (CSM)
Assessment	» Phase I Environmental Site Assessment (ESA)	 Systematic Planning
	» Phase II ESA	 Dynamic Work Strategy (DWS)
	Superfund Program	Sampling
	» Preliminary Assessment /	Real-Time Measurements
	Site Inspection (PA/SI)	Characterization CSM
	 Remedial Investigation / Feasibility Study 	
Site	Remedial Action Plan	 Design Stage CSM
Remediation	Cleanup & Development	 Dynamic Remediation using
	Long Term O&M	Real Time Measurements
		Remediation / Mitigation CSM
		Post-Remediation CSM
Post-	Redevelopment Activities	
Remediation	Property Management	
EPA		

What is Systematic Planning?

Conceptual Site Model (CSM)

- Written and graphical (2-D and 3-D) expression of site knowledge
- Primary basis for project design and execution
- Effective platform for maintaining stakeholder consensus
- Updated throughout project life cycle
- Essential to successful projects

Primary Anatomy of a CSM

Project Life Cycle CSM Supports Project Phases

Preliminary CSM

» Developed prior to systematic planning

Baseline CSM

» Product of systematic planning; documents stakeholder consensus

Characterization Stage

» Guides investigation efforts and supports decision-making

Design Stage

» Supports basis for remedy and redevelopment design

Remediation/Mitigation Stage

» Guides efforts, meet objectives, and supports optimization

Post Remedy(ies) Stage

» Documents attainment of remediation objectives and goals

Key CSM Paradigm Are You Effectively Using Data or Confusing With Data?

Well 12A Superfund Site Tacoma, Washington Figure 2-6 Trichloroethylene in Soil

Emerging CSMs: 3-D Visualization and 4-D (Time) Visualization

Source: Sundance Environmental & Energy

What is a Dynamic Work Strategy (DWS)?

How does DWS support Groundwater Characterization?

- Uses streamlined work plans with decision logic diagrams
- Sequences activities based on decisions to be made and a continuously updated CSM
- Generates collaborative data sets for multiple lines of evidence and controls uncertainties
- Provides real-time data management and communication
- Considers potential remedies and reuse

What is Meant by "Real-Time?"

Real-time = within a timeframe that allows the project team to react to the information while in the field

How is Triad Data Collection Different?

- Provides a greater density of measurements
- Uses collaborative data sets
- Employs strict field QA/QC
 - » Maximize usefulness of data
 - » Target confirmatory or collaborative sample analysis where needed
- Often uses field-based action levels or response factors with a margin of safety
- Uses real-time data management and communication strategies
 - » High volume of data gathered to capture, process, format for stakeholder decision-making

Implementing High Resolution Site Characterization

- Transect:
 - » Line of vertical profiles oriented normal to the direction of the hydraulic gradient (Horizontal spacing)
- Short Sample Interval:
 - » Vertical dimension of the sampled portion of the aquifer
- Close Sample Spacing:
 - » Vertical distance between samples
- Real-time/Near Real-time Tools
- Dynamic/ Adaptive Approach

Implementing High Resolution Site Characterization

Robust CSM

Questions?

Disclaimer

- Information presented in this presentation represents the views of the author(s)/presenter(s) and has not received formal U.S. EPA peer review.
- This information does not necessarily reflect the views of U.S. EPA, and no official endorsement should be inferred.
- The information is not intended, nor can it be relied upon, to create any rights enforceable by any party in litigation with the United States or any other party.
- Use or mention of trade names does not constitute an endorsement or recommendation for use.

