

Impacts of Subsurface Heterogeneity

Thanks to: Steve Dyment, U.S. EPA ORD Seth Pitkin, Stone Environmental

Overview

Hydrogeology review

- » Porosity
- » Hydraulic conductivity
- » Hydraulic gradient

Contaminant fate and transport review

- » Advection-Dispersion-Dissolution-Sorption-Degradation-Density-Viscosity-Mobility-Capillary Pressure-Back Diffusion
- » Unconsolidated systems
- » Fractured rock systems
- » DNAPL

Hydrogeology Review

Subsurface Environments: No Place for Low Resolution

Porosity Hydraulic Conductivity Hydraulic Head/Hydraulic Gradient Capillary pressure Geochemistry

- Ratio of volume of void space to total volume of medium
- Where the fluids reside
- ♦ <u>NOT</u> the same as Permeability/Hydraulic Conductivity
 - » Clay has a very high porosity but a very low permeability

Particle size distribution and sorting

- » Well sorted (poorly graded) ... uniform grain size
- » Poorly sorted (well graded) variety of grain sizes

Dual Porosity Systems

- Systems in which there are (relatively) high and low permeability units
- Nearly all advective flow takes place through the pores in the high permeability materials (mobile porosity)
- Water in the saturated pore spaces in the low permeability materials (immobile porosity) is dominated by diffusive, rather than advective flux
- Pore water in the low permeability materials essentially serves as storage for solutes

Dual Porosity in Unconsolidated Media

Immobile Porosity

Relatively low permeability bypassed by advective flow and dominated by diffusive flux

Mobile Porosity

Relatively high permeability and dominated by advective flow

Dual Porosity in Fractured Rock

Darcy's Law

 $Q = -KA \frac{\Delta h}{\Delta L}$ $q = Q/A = -K \frac{\Delta h}{\Delta L}$

Q is the volumetric flow rate [L³/t] L is the length between piezometers [L] A is the cross-sectional area [L²] of the column h is referred to as the hydraulic head [L] q is the Darcy flux or specific discharge (L/t)

Hydraulic Conductivity

- Empirical proportionality constant describing the ease with which water passes through a particular porous medium
- Permeability (k): property of the medium
 - » k = cd²; where:
 - > c = proportionality constant of the medium
 - > d = mean grain diameter. Units of area (L²)
- Hydraulic Conductivity (K): property of the medium and the fluid
 - » K = k ($\rho g/\mu$); units of velocity (L/t) where:
 - > ρ = density of fluid (M/L³)
 - > g = gravitational constant (L/t²)
 - > μ = viscosity of fluid (M/L/t)

Homogeneity & Isotropy

Distribution of K at CFB Borden – Beach Sand (adapted from Sudicky, 1986)

Hydraulic Conductivity Correlation Lengths

Location	Horizontal K Correlation Length (m)	Vertical K Correlation Length (m)	Investigator
Borden, Ontario	2.8	0.12	Sudicky (1986)
Otis, ANGB	2.9 – 8	0.18 – 0.38	Hess et al. (1992)
Columbus AFB	12.7	1.6	Rehfeldt et al.
Aefligan	15 – 20	0.05	Hess et al. (1992)
Chalk River, Ontario	1.5	0.47	Indelman et al. (1999)

Section B – B'

Hydraulic Conductivity Distribution on B – B'

K (cm/sec) Distribution in Lower Sand on B – B'

Hydraulic Gradient

- Driving Force
- Change in potential over distance
- Vector quantity (direction and magnitude)
- Three-dimensional

Hydraulic Gradient Variability with Depth

50

WOR

ADP5

NDP2

49,48

19.61

WOOD

0.92

Gasoline Plume Site Variability of Hydraulic Gradient with Depth

Shallow – 585 ft amsl

In Review

 Subsurface factors that affect groundwater flow vary widely over short vertical and horizontal distances

Dual porosity systems

- » Transport in the mobile porosity is dominated by advective flow
- » Transport in the immobile porosity is dominated by diffusive flux
- 'Real world' environment is far from the homogeneous and isotropic ideal

Hydraulic conductivity

- » K variability has a profound effect on groundwater flow and transport pathways
- » 2 or more orders of magnitude may be sufficient to cause flow to bypass the lower K zones and to result in those zones becoming "immobile porosity" zones

Hydraulic gradient

- » The direction and magnitude can vary substantially
- » The gradient at the water table may not be representative of the hydraulic gradient throughout the vertical profile of a flow system
- » The direction of gradient does not always indicate direction of groundwater flow (anisotropy)

Disclaimer

- Information presented in this presentation represents the views of the author(s)/presenter(s) and has not received formal U.S. EPA peer review.
- This information does not necessarily reflect the views of U.S. EPA, and no official endorsement should be inferred.
- The information is not intended, nor can it be relied upon, to create any rights enforceable by any party in litigation with the United States or any other party.
- Use or mention of trade names does not constitute an endorsement or recommendation for use.

