

Long Term Monitoring Optimization

Motivation for LTMO

- Long-term monitoring is a growing, persistent, and costly obligation for government agencies and private parties
 - » U.S. EPA spends over \$100 million each year on monitoring typically \$10Ks - \$100Ks/site
 - » Private parties likely spend more

Motivation for LTMO

- Many LTM networks not evaluated carefully since remedy implemented
- Conditions evolve over time (for better or worse)
- Periodic evaluations necessary and beneficial

Long Term Monitoring Optimization - Defined

 A formal review of the monitoring network using qualitative and quantitative tools, considering site management goals, in order to achieve an "environmentally, economically and fiscally sound, integrated, continuously improving, efficient and sustainable"* monitoring program.

* U.S. Federal Register Executive Order 13423

Long Term Monitoring Optimization Overview

Confirms monitoring program matches monitoring needs

Includes evaluation of

- » Sampling locations, sampling frequencies
- » Sampling and analytical methods
- » Data management

Two primary approaches

- » Qualitative
- » Quantitative

Benefits of LTMO

- LTMO analysis can identify:
 - » Reduction in effort:
 - > Spatially (number of wells)
 - > Temporally (sampling frequency)

- » Need for more wells to reduce spatial uncertainty
- » Potential changes to sampling & analytical methods
- » Areas where the plume is moving or changing

Benefits of LTMO

- LTMO analysis can:
 - » Clarify monitoring objectives by facilitating discussion among stakeholders

- » Provide important data to support remedy evaluation
- » Provide a monitoring program that:
 - > Is better focused on supporting decisions
 - > Reduces data gaps
 - > Is less costly, conserves resources (labor, fuel, supplies)

Evaluation Strategies

 Qualitative evaluations based on professional judgment, intimate knowledge of site, decision rules, heuristic

 Quantitative evaluations based on statistical, mathematical, modeling or empirical evidence

LTMO Methods

LTMO Methods

- » Parsons' 3-Tiered
- » ProUCL
- » Monitoring and Remediation Optimization Software (MAROS)
- » Geostatistical Temporal/ Spatial (GTS) optimization
- » Mathematical optimization

When to Apply LTMO

Is it Time?

Groundwater Monitoring Timeline

Candidates for LTMO

Is my Site a Candidate? - Rules of thumb

- » If Source is identified
- » If Plume is delineated
 - › Vertical
 - › Horizontal
- » If Database/Well Coordinates/ GW parameters in one place
- » If monitoring objectives exist...

Easy!

7 Steps to LTMO

Data Needs for LTMO

- Monitoring Objectives Remedial Action Objectives
- Conceptual Site Model
- Temporal Data
- Spatial Data
- Budget

LTMO Challenges

- Quantity and diversity of data high, stored in multiple locations and formats
- LTMO more dependent on statistics and geostatistics

Why do we take samples?

Monitoring Conceptual Site Model

- » What do you need to know?
- » What do you want to know?
- » When do you need to know it?
- » What are you trying to prove?

(Monitoring objectives...write them down)

- Who else needs to know this?
- When do they need to know it?

 Monitoring objectives determine your sampling locations and frequency

Example Monitoring Objectives

- » Evaluate remedy effectiveness
- » Evaluate source depletion
- » Delineate plume
- » Evaluate contaminant migration
- » Evaluate background
- » Evaluate potential exposure pathways
- » Comply with regulatory requirements

Decision Points

Metrics of Success

What type of data do you need to demonstrate?

Plume stability

Reduction in total or dissolved mass

Delineation or Low spatial uncertainty

Protective or Costeffective remedy?

Data Conceptual Model

Temporal Data

Chemical Analytical Data

- » Minimum dataset size to perform statistics:
 - > 4 8 Sample Events
- » Sampling intervals
 - > Relative to rate of concentration change
 - > Groundwater velocity
- » 2 Years Post-construction

Analytical Database

Essential Database Features

- » Consistent COC names and CAS No's
- » Full COC list
- » Analytical results
- » Detection Limits
- » Consistent well names
- » Data flags
- » Sample dates
- » Analytical method

Quality data is everyone's responsibility

-	ImportData : Tal	de 🛛								
	WellName	XCoard	YCoard	Constituent	SampleDate	Result	Units	DetLim	Flags	
Þ	782MW-6R2	1137643.75	1174890.35	BENZENE	9/18/2003	0.0008	mg/L	0.00015		
	782MW-6R2	1137643.75	1174890.36	BENZENE	9/18/2003	0.00074	mg/L	0.00015		
	782MW-6R2	1137643.75	1174890.35	BENZENE	9/25/2003	0.00063	ma/t.	0.00015		
	782MW-6R2	1137643.75	1174890.36	BENZENE	9/25/2003	0.014	mg/L	0.00015		
	782MW-6R2	1137643.75	1174890.35	BENZENE	9/25/2003	0.012	mg/L	0.00015		
	782MW-6R2	1137643.75	1174890.35	BENZENE	6/30/2003	0.00063	mo/L	0.00015		
	782MW-6R2	1137643.75	1174890.35	BENZENE	6/30/2003	0.00063	mg/L	0.00015		
	782MW-6R2	1137643.75	1174890.35	BENZENE	7/8/2003	0.00054	mg/L	0.00015		
	782MW-6R2	1137643.75	1174890.35	BENZENE	4/5/2004	0.00062	ma/L	0.00015		
	782MW-5R2	1137643.75	1174890.36	BENZENE	4/12/2004	0.00074	mg/L	0.00015		
	782MW-6R2	1137643.75	1174890.35	BENZENE	7/1/2004		mart.	0.00015 N	0	
	782MW-6R2	1137643.75	1174890.35	BENZENE	9/22/2004	0.00021	mort.	0.00015 T	2	
	782MW-6R2	1137643.75	1174890.35	BENZENE	10/1/2004	0.0003	mg/L	0.00015 TI	2	
	782MW-6R2	1137643.75	1174890.35	BENZENE	12/27/2004	0.00021	mo/L	0.00015 T	2	
	AP2MW-3	1138743.76	1174551.07	BENZENE	12/9/2003	2.2	mo/L	0.012		
	AP2MW-3	1138743.76	1174551.07	BENZENE	9/19/2003	2.4	mg/L	0.012		
	AP2MW-3	1136743.76	1174551.07	BENZENE	6/27/2003	2.6	ma/L	0.005		
	AP2MW-3	1138743.76	1174551.07	BENZENE	6/27/2003	2.2	mort.	0.012		
	AP2MW-3	1138743.76	1174551.07	BENZENE	3/31/2004	2.1	mg/L	0.012		
	AP2MV/-3	1138743.76	1174551.07	BENZENE	7/2/2004	1.9	merL.	0.012		
	AP2MW-3	1138743.76	1174551.07	BENZENE	9/21/2004	1.2	morL	0.0075		
	782SW-115	1138976	1174612	BENZENE	12/9/2003		ma/L	0.00015 N	Ð	
	782SW-115	1138976	1174612	BENZENE	9/19/2003		mo/L	0.00015 N	0	
	782SW-115	1138976	1174612	BENZENE	6/27/2003		mg/L.	0.00015 N	0	
	782SW-115	1138976	1174612	BENZENE	4/1/2004		mo/L	0.00015 N	Ŭ.	
	782SW-115	1138976	1174612	BENZENE	7/2/2004		mg/L	0.00015 N	Ú Ú	
	782SW-115	1138976	1174612	BENZENE	9/21/2004		mg/L	0.00015 N	Ð	
	782SW-115	1138976	1174612	BENZENE	12/29/2004		mo/L	0.00015 N	0	-18
	782SW-118	1139099	1174409	BENZENE	12/9/2003	0.0036	mg/L	0.00015		
	7825W-118	1139099	1174409	BENZENE	9/19/2003	0.0038	ma/L	0.00015		18
	2020507440	1120000	4474400	INTRO 2014	8.03.0003		and a	D COCLE M	0	

Spatial Database

Spatial Database

- » Location coordinates
- » Well construction/location details
- » Well function (monitoring, extraction)
- » Construction date
- » Screened intervals
- » Aquifer or unit
- » Elevation

Spatial Data

Spatial Data

- » Geographic coordinates
- » Sampling locations
- » Receptors
- » Property boundaries

- » Shape or dxf files major features in GIS files
- » Source areas or areas of peak concentrations

Spatial Data

Spatial Data

- » Delineation
- » Plume contours (historic) and boundaries
- » Major discontinuities or heterogeneities, surface water

Qualitative Approach to Long Term Monitoring Optimization

Considerations for Any Analysis

Data Set Comparability

- » Spatial and temporal comparability
- » Cleanup impacts
- » Climatic/hydrologic changes: drought, pumping changes
- » Differences or changes in:
- » Sampling techniques (e.g. purge & bail vs low-flow)
- » Well construction
- » Analytical differences (e.g. method, dilution, detection limit)

Primary Qualitative Considerations

Temporal Analysis – Frequency based on:

» Rate/nature of contaminant concentration change – trend and variability – as function of location in plume

Spatial Analysis - Locations based on:

» Proximity to other wells in same aquifer

Other Major Considerations

- » Groundwater flow conditions
- » Monitoring objectives
- » Current and future exposure risk
- » Clean-up actions and timeframes

Qualitative Consideration of Groundwater Flow

Question of likely flow paths – now/future

- » Wells in higher permeability paths
 - > Priority
 - Higher frequency
- » Cross- and up-gradient wells
 - > Less frequently
- » Variable flow directions (e.g., seasonal)
- » Consider vertical migration in spatial optimization

Qualitative Consideration of Groundwater Flow

Transport Rates

- » Higher groundwater velocities = more frequent sampling
- » Contaminant behavior
- » Most sites: slow contaminant migration

Qualitative Consideration of Site Monitoring Objectives

Emphasis on plume boundary monitoring

» Detect plume expansion, contraction

Internal plume axis wells

- » Assess plume stability
- Assess remedy performance

Qualitative Consideration of Current/Future Exposure Risk

 Generally, the less risk to human, ecological health, the less intense the monitoring

Consider future land use changes

- » Future residential use may lead to qualitative adjustments
- » Maintain sampling network density, future increases in sampling frequency
- » Example vapor intrusion issues

Changing land use impacts on well network

Qualitative Consideration of Cleanup Actions & Timeframes

- Consider short-term cleanup impacts on trends
- Related to groundwater flow, risk posed by site
- Generally, the more time available to start actions, the less frequent the sampling

Other Considerations for Qualitative Analysis

Public Concerns / Regulatory Requirements

Temporal Analysis

» Frequency of Data Assessment by Project Team Rate of Contaminant Migration

Spatial Analysis

- » Compliance Point or Sentinel Well
- » Background Definition
- » Past Well Performance (Goes dry, poor Construction)
- » Continuity for Wells with Long Sampling History
- » Identified Data Gaps

Combining Qualitative and Quantitative Approaches

Coupled Analysis has Advantages

» Subjectivity vs. Repeatability

Quantitative Results Need Qualitative "Reality Check"

- » Consider Data Quirks
- » Consider Site Hydrogeology
- » Consider Well Construction, Sampling Depths
- » Address Stakeholder Needs
- » Consider Recent and Future Changes
- » Production and Land Use
- » Impacts of Climate, Other Factors
- » Qualitative Review May Trump Quantitative Results

Qualitative Input to Quantitative Methods

- Parameters, assumptions for some aspects of quantitative methods based on professional judgment
 - » Settings that affect quantitative optimization outcomes
 - » Selection of time "window" for quantitative analysis
 - » Examples from MAROS
 - Slope factors, rate of change temporal optimization
 - » Require consensus, negotiation
 - » Explore sensitivity to parameter selection

Quantitative Approach to Long Term Monitoring Optimization

Methods

Common Analyses

- » Statistical Summary
- » Trend Analysis
- » Spatial Locations
- » Remove redundant wells
- » Recommend new wells
- » Temporal Sampling frequency

Methods

Quantitative LTMO Tools

- » Statistical trend analysis
 - > Individual well
 - › Plume-level
- » Statistical significance testing
- » Interpolation/geostatistics
- » Mathematical optimization
- » Groundwater flow models

Example Tool: Monitoring and Remediation Optimization Software (MAROS)

Lines of Evidences	Method
Individual well trend	Mann-Kendall (linear regression)
Plume wide trends	Moment analysis: Total dissolved mass, center of mass, and distribution of mass
Well redundancy and sufficiency	Delaunay triangulation and slope factor calculation, along with area ratios and concentration ratios
Sampling frequency	Modified cost effective sampling
Data Sufficiency	Sequential T-Test, Student's T-Test and Power analysis
Qualitative Evaluation	Hydrogeologic factors, monitoring objectives, stakeholder concerns and all statistical results to develop final recommendations

Uses Several Lines of Evidence to Develop Recommendations for the Monitoring Network

Data Exploration

Examine summary statistics

- » Detection rates
- » MCL exceedances
- » Outliers
- » 95%UCL
- » Cumulative distribution function

Concentration maps

- » Well medians, maximums
- » Dot maps and bubble plots identify "hot spots"

Mann-Kendall Test Approach

Mann-Kendall Test Approach

Confidence Factor

- » *p* from the Kendall probability table for value of S and n (# of samples)
- » $p = \text{probability of accepting H}_0 \text{No trend}$
- » Confidence Factor = (1-p)%
 - > α = 0.05 95% CF Strong trend
 - > α = 0.1 90% CF Moderate trend

Coefficient of Variation

» COV = Standard deviation/mean

Mann-Kendall Test Results

Spatial Analysis

Mesh Creation – Delaunay/Theissen/Voronoi

- » Moments
- » Spatial uncertainty

Statistical Surface Creation

- » Stepwise regression with linear estimators
- Geostatistics-Kriging
- Groundwater Modeling
- Mathematical Optimization

Plume Stability Evaluation

- Plume Delineation Plume Length
- Well Concentrations Trend Analysis
- First Moment Estimates First Moment Estimates
- Second Moment Spread of Mass **Estimates** $\odot \odot \odot$

 \bullet

Ð

Ω

Temporal Analysis

Sampling frequency based on

- » Groundwater flow velocity
- » Rate of concentration change
- Decision logic methods
- Iterative thinning

Combined spatial/temporal optimization

Evidence

Evaluation Strategies

- » Develop lines of evidence
 - Evaluate quality of information from each location and how it meets monitoring goals
 - > Detection frequency, trends, plume stability
 - > Spatial redundancy/uncertainty
 - Sampling frequency consistent with rate of change

Result

Recommendations

- » Monitoring locations that serve monitoring objectives and decision needs;
- » Remove redundant locations;
- » Add wells where uncertainty is high;
- » Optimal sampling frequency

Qualitative Review!

Questions?

Disclaimer

- Information presented in this presentation represents the views of the author(s)/presenter(s) and has not received formal U.S. EPA peer review.
- This information does not necessarily reflect the views of U.S. EPA, and no official endorsement should be inferred.
- The information is not intended, nor can it be relied upon, to create any rights enforceable by any party in litigation with the United States or any other party.
- Use or mention of trade names does not constitute an endorsement or recommendation for use.

