

Site Completion Case Study Frontier Hard Chrome

Thanks to: Bernie Zavala U.S. EPA, Region 10

Overview of this Presentation

- Description of the site (CSM) and data results from additional investigations
- The remedial technologies & implementation of the remedy
- Groundwater monitoring program
- Evaluation of the groundwater data by the U.S. EPA's Groundwater Statistics tool
- Results and recommendations

Frontier Hard Chrome Superfund Site

Conceptual Site Model

Generalized Hydrogeological Model

Data Results from the Additional Investigation Soil (mg/kg)

Direct push survey

Direct push survey sampling for Cr(VI) in groundwater & downhole electromagnetic borehole flowmeter testing results

Ire 2.3. Geoprobe Sampling Locations and Aqueous Cr(VI) Concentrations (µg/L) Measured During the Initial Vertical Profile Sampling at the Site (EPA) Taken from Battelle, (1/2004) In Situ Redox Manipulation Permeable Reactive Barrier Emplacement: Final Report, Frontier Hard Chrome

Direct push survey

Data results from an additional direct push survey for total chromium for groundwater quality (µg/L)

The Remedial Technologies

In Situ Redox Manipulation Permeable Reactive Barrier

Treatment of the source area soil & groundwater in situ using augers to mix a reducing agent "EcoBond"

Schematic to illustrating the concept of the ISRM Wall

Taken from Battelle (1/2004), In Situ Redox Manipulation Permeable Reactive Barier Emplacement: Final Report, Frontier Hard Chrome

Final Location of the Reactive Barrier

Figure 3.8. Well Location Map

Implementation of the ISRM Wall

Treatment of the Source Area Soil & Groundwater In Situ Using Augers to Mix the Reducing Agent "EcoBond"

Two different auger size diameters, 10 and 6 feet with injection ports along the stem of the auger. Treatment depths 2.5 to 25 feet BGS

Treatment of the Source Area Soil & Groundwater In Situ Using Augers to Mix the Reducing Agent "EcoBond"

Treatment of the Source Area Soil & Groundwater In Situ Using Augers to Mix the Reducing Agent "EcoBond"

Confirmation Soil Sample Results Hexavalent Chromium (7 & 17 feet BGS)

Confirmation Groundwater Sample Results Hexavalent Chromium (down to 30 feet BGS)

Groundwater Monitoring Network and Monitoring Program

Thanks to: Bernie Zavala U.S. EPA, Region 10

Site Map and Monitoring Well Locations

Groundwater Monitoring - A-Zone Total Chromium Concentration (µg/l) September 2007

Groundwater Monitoring - B-Zone Total Chromium Concentrations (µg/l) September 2007

Implementation of the Long Term Monitoring Optimization (LTMO)

- Monitoring And Remediation Optimization Software (MAROS) method was selected for the LTMO and the evaluation was performed in 2007
- Total of 33-monitoring wells were actively being monitored
 - » 16-wells in the A-zone
 - » 17-wells in the B-zone
- Sampling frequency was quarterly for the most part

MAROS Uses Several Lines of Evidence to Develop Recommendations for the Monitoring Network

Lines of Evidences	Method
Individual well trend	Mann-Kendall (linear regression)
Plume wide trends	Moment analysis: Total dissolved mass, center of mass, and distribution of mass
Well redundancy and sufficiency	Delaunay triangulation and slope factor calculation, along with area ratios and concentration ratios
Sampling frequency	Modified cost effective sampling
Data Sufficiency	Sequential T-Test, Student's T-Test and Power analysis
Qualitative Evaluation	Hydrogeologic factors, monitoring objectives, stakeholder concerns and all statistical results to develop final recommendations

Results of the LTMO

- Monitoring network was sufficient
- General decreasing trend in groundwater quality in all monitoring wells
- Some monitoring well redundancy
- Sampling frequency could be reduced from quarterly to semi-annually
- After 2007 the list of monitoring well locations for sampling changed from 33 to 22

The Statistical Evaluation of the Groundwater Data

- Recommended Approach for Evaluating Completion of Groundwater Restoration Remedial Actions, March 2014
- Groundwater Statistical Tool and User's Guide. January 2014

Remediation and Attainment Monitoring

- The evaluation will be performed on a Well by Well basis per COC
- Either a statistical approach or non-statistical approach can be used
- There are two different phases of evaluation groundwater monitoring
 - » Remediation phase monitoring typically is completed when the data collected and evaluated demonstrate that the groundwater has reached the cleanup levels
 - » Attainment phase monitoring contaminant cleanup level has been met for each well and will be in the future

Example of Remediation & Attainment Monitoring

Sample Number	Matrix	Sample Date	Analyte	Cons.	Units	Qualifier	Station Location	Notes	NTU
MJ2524	Water	17-Oct-03	Chromium	192	L/D/L	0000000000	RA-MW-12A	Dissolved	>10
MJ27F5	Water	12-Nov-03	Chromium	155	HB/L		RA-MW-12A	Dissolved .	>10
MJZAFO	Water	02-Feb-04	Chromium	180	Port.		RA-MW-12A	Total	7.00
MJ28H9	Water	06-Apr-04	Chromium	55.8	PD4		RA-MW-12A	Dissolved	17,00
MJ4725	Water	17-Aug-04	Chromium	24.9	Pour.		RA-MW-12A	Dissolved	12.00
184253	Water	05-Max-05	Chromium	16	uo/L		RA-MW-12A	Dissolved	32.00
05504282	Water	12-Dec-05	Chromium	10.2	ug/L		RA-MW-12A	Dissolved	86.00
104243	Water	07-Mar-06	Chromium	9.6	wo/L		RA-MW-12A	Dissolved	60.00
244313	Water	15-Jun-06	Chromium	50	ug/L	U	RA-MW-12A	Dissolved	47.00
304218	Water	28-500-05	Chromium	6.0	ug/L	-	RA-MW-12A	Dissolved	80.00
494110	Water	04-Dec-06	Chromkam	6.8	wa/L		RA-MW-12A	Dissolved	12.00
134255	Water	30-Mac-07	Chromkum	5.0	wart.		RA-MW-12A	Dissolved	85.00
234081	Water	05-lun-07	Chromkum	4.65	ug/l.		RA-MW-12A	Dissolved	55.00
384560	Water	19-Sep-07	Chromkum	4.7	uo1.		RA-MW-12A	Dissolved	11.00
504161	Water	12-Dec-07	Chromium	5.7	ug/L		RA-MW-12A	Dissolved	60.00
8394103	Weter	22-Sep-08	Chromium	11.2	ug/L		RA-MW-12A	Dissolved	200.00
90908523	Weter	16-Sep-09	Chromium	8.68	ug/l		RA-MW-12A	Dissolved	102.00
1009055-25	Water	15-Sep-10	Chromkum	7.77	tota		RA-MW-12A	Dissolved	>10
1009064-24	Water	15-Sep-11	Chromium	9	100/1		RA-MW-12A	Dissolved	40.00
1210057-25	Water	18-Oct-12	Chromium	6.08	uo/L		RA-MW-12A	Dissolved	12.10
1204072.02	Weighter	96 Apr 19	Chromium	5.00	and a	100	DA MIN 12A	Citracianet.	5.10

Well-RA-MW-12A

Note: Where a deserved concentration is used, the NTU value listed is the pre-filtering value.

Note: Where a dissolved concentration is used, the NTU value listed is the pre-fitering value

Well B87-8

Cone.

18.2

241

8.5

18.8

31

50

21.8

13.4

34

7.8

9.2

53.3

56.9

119

40.5

2.71

Units

µg/L

µg/L

H9L.

µ91.

µ91_

µ91.

µg/L

40^AL

how

HD/L

µg/L

HO/L

µg/L

µg/L

HD/L

µg/L

Qualifier

4

Station Location

887-8

887-8

B87-8

B87-8

887-8

887-8

887-8

B87-8

B87-8

887-8

887-8

B87-8

B87-8

887-8

887-8

887-8

Notes

Total

Total

Dissolved

Total

Total-

Total

Total

Dissolved

Total

Dissolved

Dissolved

Dissolved

Dissolved

Dissolved

Disachved

Dissolved

NT

2.0

8.0

36.

6,5

5.1

8.0

3.0

13.

0.1

11.

0.9

2.1

8.4

13.

16.1

6.0

Analyte

Chromium

Chiomium

Chromium

Chromium

Chromkum

€PA

Sample Number

M.I2AC99

MJ2BK0

MJ4737

184267

05504297

104236

244308

394204

484082

134251

234089

384552

504144

8394098

90906520

1009065-20

1009064-10

1210057-13

1304072-01

Sample Date

04-Feb-04

07-Apr-04

18-Aug-04

04-May-05

13-Dec-05

06-Mar-06

14-Jun-08

27-Sep-06

02-Dec-06

30-Mar-07

06-Jun-07

18-Sep-07

11-Dec-07

21-Sep 08

16-Sep-09

15-Sep-10

Matrix

Water

Weber

Upphar

Water

Water

Water

Examples of Attainment Monitoring Non-Statistical

Well RA-MW-15A

Sample Number	Matrix	Sample Date	Analyte	Conc.	<u>Units</u>	<u>Qualifier</u>	Station Location	Notes	NTU
MJ2506	Water	15-0ct-03	Chromium	4	µg /L	U	RA-MW-15A	Total	<10
MJ27E8	Water	11-Nov-03	Chromium	1.5	µg/L	BJ	RA-MW-15A	Total	<10
MJ2AG7	Water	04-Feb-04	Chromium	7.2	µg/L	J	RA-MW-15A	Total	1.00
MJ2BH1	Water	05-Apr-04	Chromium	1.8	µg/L	J	RA-MW-15A	Total	0.00
MJ4722	Water	17-Aug-04	Chromium	1.5	µg/L	J	RA-MW-15A	Total	0.00
184248	Water	04-May-05	Chromium	4.7	µg/L		RA-MW-15A	Total	2.00
05504290	Water	13-Dec-05	Chromium	37	µg/L		RA-MW-15A	Total	1.30
104251	Water	07-Mar-06	Chromium	5.3	µg /L		RA-MW-15A	Total	0.00
244290	Water	12-Jun-06	Chromium	4.6	µg /L		RA-MW-15A	Total	0.60
394192	Water	25-Sep-06	Chromium	2.7	µg /L		RA-MW-15A	Total	0.20
494090	Water	02-Dec-06	Chromium	5.0	µg /L	U	RA-MW-15A	Total	2.00
134241	Water	29-Mar-07	Chromium	3.7	µg/L		RA-MW-15A	Total	0.30
234068	Water	04-Jun-07	Chromium	4.0	µg/L		RA-MW-15A	Total	0.50
384541	Water	17-Sep-07	Chromium	3.1	µg/L		RA-MW-15A	Total	0.40
504153	Water	12-Dec-07	Chromium	3.9	µg/L		RA-MW-15A	Total	1.10
8394093	Water	21-Sep-08	Chromium	2.4	µg/L		RA-MW-15A	Total	0.30
90906514	Water	17-Sep-09	Chromium	2.62	µg/L		RA-MW-15A	Total	1.32
1009065-19	Water	16-Sep-10	Chromium	2.82	µg/L		RA-MW-15A	Total	<10
1009064-16	Water	15-Sep-11	Chromium	2	µg /L	U	RA-MW-15A	Total	2.46
1210057-18	Water	18-0at-12	Chromium	9.00	μgÆ		RA-MW-15A	Total	0.18

Note: Where a dissolved concentration is used, the NTU value listed is the pre-filtering value.

Well W85-6A

Sample Number	<u>Matri x</u>	<u>Sample Date</u>	<u>Analyte</u>	Conc.	<u>Units</u>	<u>Qualifier</u>	Station Location	<u>Notes</u>
MJ2AJ8	Water	09-Feb-04	Chromium	1.4	μg/L	J	W85-6A	Total
MJ2BL0	Water	08-Apr-04	Chromium	14.3	µg/L		W85-6A	Total
MJ4747	Water	19-Aug-04	Chromium	9.1	µg/L	J	W85-6A	Total
184235	Water	04-May-05	Chromium	2.9	μg/L		W85-6A	Total
244284	Water	12-Jun-06	Chromium	2.2	μg/L		W85-6A	Total
394182	Water	25-Sep-06	Chromium	4.1	µg/L		W85-6A	Total
494113	Water	05-Dec-06	Chromium	5	μg/L	U	W85-6A	Total
134245	Water	30-M ar-07	Chromium	3.4	μg/L		W85-6A	Total
234072	Water	05-Jun-07	Chromium	3.2	µg/L		W85-6A	Total
384545	Water	18-Sep-07	Chromium	4.1	µg/L		W85-6A	Total
504132	Water	10-Dec-07	Chromium	2.1	µg/L		W85-6A	Total
8394083	Water	20-Sep-08	Chromium	2.9	µg/L		W85-6A	Total
90906501	Water	15-Sep-09	Chromium	1.53	μg/L		W85-6A	Total
1009065-03	Water	15-Sep-10	Chromium	3.06	μg/L		W85-6A	Total
1009064-03	Water	13-Sep-11	Chromium	3	µg/L		W85-6A	Total
1210057-03	Water	16-Oct-12	Chromium	4.21	µg/L		W85-6A	Total

 Θ

Groundwater Statistics Tool - Data input

Groundwater Statistics Tool Data input worksheet

Site Name Test				
Operating Unit (OU)	Test			
Type of Evaluation	Attainment			
Date of Evaluation	4/7/2014			
Person performing analysis	Bernie Zavala			
Chemical of Concern	Chromium			
Well Name/Number	B-87-8			
Date Units	Date			
Concentration Units	ug/L			
Confidence Level Desired	95%			
Remediation Goal	50			
Source of cleanup goal (e.g. MCL or risk-based concentration)	risk-based			
Risk of False Outlier Rejection	1%			
Random Seed (may be left blank)				
Significant figures to use	3			

Number of data points:	15
Number of detected results.	15
Number of nondetect results:	0
Detection frequency:	100%

Date (Date)	Chromium Concentration (ug/L)	Data Qualifier	Detected? (Yes or No)
3/6/2006	50		Yes
6/14/2006	21.8		Yes
9/27/2006	13.4	-	Yes
12/2/2006	31		Yes
3/30/2007	7.8	8	Yes
6/6/2007	9.2		Yes
9/18/2007	53.3	2	Yes
12/11/2007	66.9		Yes
9/21/2008	119	1	Yes
9/16/2009	40.5		Yes
9/15/2010	2.71		Yes
9/14/2011	3		Yes
10/17/2012	6.86	10.000	Yes
4/25/2013	5.96		Yes
12/11/2013	6.86		Yes
-			

Data Review		Recommendations
Are all necessary data fields entered, and in proper format?	Yes	None
Are sufficient data points (>8) present for statistical analysis?	Yes	None
Are detection limits for nondetects < maximum detected value?	Yes	None
Are all data within chart axis limits?	Yes	None

Groundwater Statistics Tool

Outlier testing worksheet

Dixon's Outlier Test Results					
Number of data points	15				
Risk of false rejection	* 1%				
Critical value	0.616				
Outlier type	Low	High			
Test statistic	0.0642	0.5812			
Potential Outlier?	No	No			
Validity of Dixon'sTest	Valid				

Groundwater Statistics Too

Normality Testing Worksheet

Normality Test Results					
Parameter	All Data	Minus Outliers			
Number of data points	15				
Shapiro-Wilk alpha value	5%	N/A			
Slope	31.9190286	N/A			
Intercept	28.55266667	N/A			
Correlation, R	0.875145548	N/A			
Exact Test Value	0.7806649	N/A			
Critical Value	0.881	N/A			
Conclude sample distribution:	Does not appear normal	N/A			

Groundwater Statistics Tool

Trend test results for datasets nonparametrically distributed residuals

	1	in the second second	C		95 UCL
1	(Days)	C (ug/L)	Predicted	Residual	Line
1	38782	50	17.3	32.7	54.8
2	38882	21.8	16.7	5.1	53.8
3	38987	13.4	16.1	-2.7	52.4
4	39053	31	15.8	15.2	52
5	39171	7.8	15.1	-7.3	50.9
6	39239	9.2	14.8	-5.6	50.5
7	39343	53.3	14.2	39.1	50.3
8	39427	56.9	13.7	43.2	50
9	39712	119	12.2	106.8	49.7
10	40072	40.5	10.2	30.3	49.9
11	40436	2.71	8.22	-5.51	51.5
12	40800	3	6.23	-3.23	55.8
13	41199	6.86	4.05	2.81	60.7
14	41389	5.96	3.02	2.94	62.3
15	41619	6.86	1.76	5.1	64.6
16		Town the real	and the second second		
17					
18					
19					
20					

	Mann-Ke	endall
E	Fest Result	No trend
-	Fest Statistic (S)	-30
1	Normalized S	-1.437
(Critical Value	1.645

Theil-Sen	
Slope	-0.00546
Intercept	229
When is the concentration predicted to exceed the MCL?	Not applicable - slope is not statistically increasing

Groundwater Statistics Tool

Summary and UCL calculations for nonparametric data sets

Teet	55-55C 25 200 -
Test	Trend and U
Attoinment	 Detected Data
Attainment	Bemediation Goal
4/7/2014	140
Bernie Zavala	120 -
	•
Chromium	☐ 100 -
B-87-8	/ar
Date	5 80 -
ug/L	60 •
95%	4 0 -
15	3 20 - •
11	
No	0 +
28.6	38500 39000 39500 40000
31.7	Mo
	Test Test Attainment 4/7/2014 Bernie Zavala Chromium B-87-8 Date ug/L 95% 15 11 No 28.6 31.7

95% Upper Confidence Limit (UCL)	64.3
Method for calculating UCL	Chebyshev UCL
Value of 95% Upper Confidence Band value at final sampling event	64.6
Trend calculation method	Theil-Sen/Mann-Kendall
Remediation goal	50
Source of remediation goal	risk-based
Is the trend decreasing or statistically insignificant?	Yes

When is the concentration predicted to exceed the MCL?	Not applicable - slope is not statistically increasing
Random Seed Used	58608.94141

Results and Recommendations

- No, this site has not attained the chromium cleanup level throughout the plume
- ◆ The 95% UCL is 64.3 ug/L cleanup level 50 ug/L
- Yes, the trend is decreasing or not statistically significant
- Recommendation: Continue sampling for two additional quarters and redo the evaluation

Comparison of Case Study to the EPA's Guidance for Evaluating of Groundwater Restoration

- Discussion of the evolving CSM
- Remedial Technologies and monitoring confirms the DQOs were meet
- Adequate groundwater monitoring program (LTMO) Groundwater monitoring network was sufficient
- Statistical Evaluation of the groundwater data on a "well-by-well basis" for each COC
- Evaluated remediation monitoring and then attainment monitoring through a statistical tool
- Statistical analysis for each well determined that additional monitoring is needed to demonstrate completion of the restoration remedial action
- Once groundwater restoration has been met, it will be recommended to pursue site deletion.

Questions?

Disclaimer

- Information presented in this presentation represents the views of the author(s)/presenter(s) and has not received formal U.S. EPA peer review.
- This information does not necessarily reflect the views of U.S. EPA, and no official endorsement should be inferred.
- The information is not intended, nor can it be relied upon, to create any rights enforceable by any party in litigation with the United States or any other party.
- Use or mention of trade names does not constitute an endorsement or recommendation for use.

