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Module Overview

♦ Hydrogeology primer
» Porosity
» Hydraulic conductivity
» Hydraulic gradient

♦ Contaminant fate and transport primer
» Advection-Dispersion-Dissolution-Sorption-Degradation-

Density-Viscosity-Mobility-Capillary Pressure-Back Diffusion
» Unconsolidated systems
» Fractured rock systems
» DNAPL
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Contaminant Fate and 
Transport Review



Advection
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♦ Movement at the average linear groundwater seepage 
velocity (v) in the direction of the hydraulic gradient

♦ v = K (Δh/Δl)/θ 
» Where:

› K = hydraulic conductivity (L/t)
› Δh/Δl = hydraulic gradient (L/L)
› θ = porosity (L3/L3)



Advection – Dispersion Equation
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Where:

c = Solute concentration

t = Time

v = Seepage velocity

D = Hydrodynamic Dispersion Coefficient

G/θ = Mass produced or consumed/unit  
volume porous media
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Hydrodynamic Dispersion Coefficient

D = Dm + Dd

Where:
D = Hydrodynamic Dispersion Coefficient
Dm = Mechanical Dispersion Coefficient
Dd = Effective Molecular Diffusion Coefficient

Dm =  ά v
Where:

ά = dispersivity (property of the medium)
v = average linear seepage velocity

Dd = DoΤ

Where:
Do = Free molecular diffusion Coefficient
Τ = Tortuosity
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Hydrodynamic Dispersion

♦ Natural Gradient Tracer Tests
» Sudicky 1979

» Stanford/Waterloo – 1982

» USGS Cape Cod – 1986

» Rivett et al. 1991

♦ Dispersion is scale 
(time/distance) dependent

♦ Transverse horizontal 
dispersion is weak

♦ Transverse vertical dispersion 
is even weaker

♦ Longitudinal dispersion may 
be significant Stanford-Waterloo Natural Gradient Tracer Test 

Layout, Water Resources Research, 1982
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Rivett’s Experiment: The Emplaced Source Site

Rivett et al, 2000 8



TCM Plume at 322 Days; Weak Transverse Dispersion

Rivett et al., 2001
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Contaminant Phases

♦ Non Aqueous Phase Liquid (NAPL)

♦ Gas (vapor) phase

♦ Solute (dissolved in water)

♦ Sorbed

10



Volatilization (Gas Phase)

♦ Creates soil gas plumes, indoor air contamination and depletes 
mass in groundwater

♦ From NAPL in unsaturated zone, governed by vapor pressure

« For a compound in a multi-component NAPL the vapor pressure is a 
function of Raoult’s law:        C = Xt(P

0/RT) 

Where: C = vapor phase concentration

Xt = mole fraction of compound in NAPL

P0 = Pure phase vapor pressure

R = Ideal Gas Constant

T = Temperature

♦ From solute in groundwater, governed by Henry’s Law

« Warning: many forms of Henry’s constants with different units!
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Gas Phase Plumes

♦ Gas phase plumes can transport contaminant mass via 
concentration, density, pressure or even temperature 
gradients

♦ Gas phase transport is relatively rapid

♦ Soil gas plumes can create “interface zone” 
groundwater plumes

♦ Groundwater solute plumes can create soil gas 
contamination but only if the plume is within the upper 
meter of the aquifer

♦ Soil gas plumes infiltrate buildings and degrade indoor 
air quality

♦ Potential for human exposure
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Dissolution

♦ Governed by solubility
« Polarity

« Molecular size

♦ For a compound in a multi-component NAPL the 
effective solubility is a function of Raoult’s law: 

Seff = XtS
0

Where: Seff = effective solubility

Xt = mole fraction of compound in NAPL

S0 = Pure phase solubility

♦ Effective solubility of individual compounds change 
over time as more soluble compounds become 
depleted
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Dissolution: Rate of Mass Transfer

♦ The Rate of Mass Transfer:
Rmt = Cmt*δC*Ac

Where: Rmt = rate of mass transfer

Cmt =  mass transfer coefficient

δC = concentration gradient

Ac = Contact area

♦ Mass transfer is greater in zones of residual than in 
pools and is greater in high flow zones than low flow 
zones

♦ Disconnect between mass flux and concentration
« Sample from a high flux zone may have a relatively low 

concentration

« Sample from a low flux zone may have a high concentration
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♦ Sorption of solutes to organic matter on 
the solid particles results in retardation 
of the plume

♦ Sorption is reversible

♦ Results in “chromatographic separation” 
of different contaminants in the plum

♦ Retardation from sorption is calculated 
as

Kd can be calculated as foc * Koc from Kow
but beware use of literature values!

Sorption
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R for PCE at Borden = 2.7 – 5.9

R for CTET at Borden = 1.8 – 2.5

MacKay et al., 1986 
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Degradation

♦ Biotic and abiotic

♦ Degradation eliminates mass

♦ Degradation rates dependent on
» Presence, health of consortia 

of organisms
» Redox conditions (electron 

acceptors)
» Nutrient availability
» Nature of contaminant
» Combinations of contaminants (cometabolism, enzyme 

induction, toxicity effects)

♦ Progeny may be more toxic, mobile, and recalcitrant 
than parent compound

♦ All conditions vary spatially
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NAPL Density: LNAPL and DNAPL

Pankow and Cherry, 1996
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Density, Viscosity and Mobility

K = kÞg/µ
Where: K = Hydraulic Conductivity (L/t)

k = Intrinsic permeability (L2)
Þ = density of fluid (M/L3)
µ = viscosity (F-t/L2)
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Relative mobility of various liquids 

19Cohen and Mercer, 1993



Multiple Fluids: Wettability

♦ Wettability is determined by the contact angle 

♦ Typically aquifer materials are water wet and the NAPL 
is non wetting but…

♦ NAPL can be wetting

♦ Contact angle and wetting fluid can change over time

Non Wetting Wetting

20



Multiple Fluids: Wettability

Multiple fluids in the pore space of a granular porous media.

Source: Wilson et al., 1990.
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Effects of Capillary Pressure Variability on NAPL 
Distribution

Bernie Kueper
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Variability of Entry Pressures

UK Environment Agency, Publication 133
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Residual NAPL

♦ Even after pumping has removed all the available 
mobile NAPL, a large mass of NAPL contamination will 
remain as residual NAPL in the aquifer

♦ The residual serves as an on-going source for dissolved 
plumes and soil gas contamination

♦ Residual can be remobilized by changing conditions 
(for example, hydraulic gradient)
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DNAPL Distribution Scenarios

Pankow and Cherry, 1996
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mm scale textural changes control 
DNAPL Migration

Poulsen & Kueper, 1992
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What is Back Diffusion?

♦ Slow release of contaminants stored in lower K zones 
(dissolved and sorbed phase) back to higher K zones 

♦ Occurs when concentrations at interfaces between 
high-low K zones decline
» natural source depletion
» Source and plume zone remediation

♦ Can be primary cause of long-term plume persistence 
IF source is isolated or remediated
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Steve Chapman – G360 Centre for Applied Groundwater Research, 
University of Guelph



Stronger Back-Diffusion Effects Expected  at Sites with 
DNAPL Releases

♦ DNAPL and high 
plume [VOCs] 
proximate to low K 
zones

♦ Most sites 
contaminated for 
decades (significant 
inward diffusion)

♦ Sorption increases 
low K zone mass 
storage 

♦ 4-5 OoM between 
solubility and MCLs 
for most chlorinated 
solvents
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Steve Chapman – G360 Centre for Applied Groundwater Research, 
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Sand Aquifer with Clay Lenses and Underlying Aquitard
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Steve Chapman – G360 Centre for Applied Groundwater Research, 
University of Guelph



Persistent Plume after Source Isolation due to Back 
Diffusion from Aquitard and Clay Lenses

Steve Chapman – G360 Centre for Applied Groundwater Research, 
University of Guelph
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Mass Flux Distribution

75% of mass discharge occurs through 5% to 10% of the plume cross sectional area

Optimal Spacing is ~0.5 m

34Guilbeault et al., 2005 



Factors Governing Flow in Fractured Media
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Dense, Well Connected Fx Network

Simulated Plume @ 50 years

Beth Parker and Steve Chapman – University of Guelph 36



Sparse Network of Major Fractures

Simulated Plume @ 50 years

37Beth Parker and Steve Chapman – University of Guelph



Fracture Interconnectedness
Mirror Lake, NH (Granite)

Shapiro, A. M., and P. A. Hsieh, 1994 38

http://toxics.usgs.gov/highlights/fractured_rock_hydraulic.html
http://toxics.usgs.gov/highlights/fractured_rock_hydraulic.html


DNAPL Disappearance from Fractures by Diffusion
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Parker et al., 1997 39



Porous Rock Matrix

Diffusion Halo

Fracture

Diffusion Into Rock Matrix
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In Review

♦ Subsurface factors that affect groundwater flow vary 
widely over short vertical and horizontal distances

♦ Contaminant fate and transport is sensitive to 
hydrogeological variations

♦ DNAPL presents a particularly difficult challenge
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Questions?
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Disclaimer

♦ Information presented in this presentation represents the views 
of the author(s)/presenter(s) and has not received formal U.S. 
EPA peer review.

♦ This information does not necessarily reflect the views of U.S. 
EPA, and no official endorsement should be inferred. 

♦ The information is not intended, nor can it be relied upon, to 
create any rights enforceable by any party in litigation with the 
United States or any other party.

♦ Use or mention of trade names does not constitute an 
endorsement or recommendation for use.
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